

# General Certificate of Education

# Mathematics 6360

MFP2 Further Pure 2

# Mark Scheme

# 2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

## **Key To Mark Scheme And Abbreviations Used In Marking**

| M                          | mark is for method                                                 |     |                            |  |  |
|----------------------------|--------------------------------------------------------------------|-----|----------------------------|--|--|
| m or dM                    | mark is dependent on one or more M marks and is for method         |     |                            |  |  |
| A                          | mark is dependent on M or m marks and is for accuracy              |     |                            |  |  |
| В                          | mark is independent of M or m marks and is for method and accuracy |     |                            |  |  |
| Е                          | mark is for explanation                                            |     |                            |  |  |
|                            |                                                                    |     |                            |  |  |
| $\sqrt{\text{or ft or F}}$ | follow through from previous                                       |     |                            |  |  |
|                            | incorrect result                                                   | MC  | mis-copy                   |  |  |
| CAO                        | correct answer only                                                | MR  | mis-read                   |  |  |
| CSO                        | correct solution only                                              | RA  | required accuracy          |  |  |
| AWFW                       | anything which falls within                                        | FW  | further work               |  |  |
| AWRT                       | anything which rounds to                                           | ISW | ignore subsequent work     |  |  |
| ACF                        | any correct form                                                   | FIW | from incorrect work        |  |  |
| AG                         | answer given                                                       | BOD | given benefit of doubt     |  |  |
| SC                         | special case                                                       | WR  | work replaced by candidate |  |  |
| OE                         | or equivalent                                                      | FB  | formulae book              |  |  |
| A2,1                       | 2 or 1 (or 0) accuracy marks                                       | NOS | not on scheme              |  |  |
| –x EE                      | deduct x marks for each error                                      | G   | graph                      |  |  |
| NMS                        | no method shown                                                    | c   | candidate                  |  |  |
| PI                         | possibly implied                                                   | sf  | significant figure(s)      |  |  |
| SCA                        | substantially correct approach                                     | dp  | decimal place(s)           |  |  |

#### No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

# MFP2

| Total  Total  7  2(a) $\dot{x} = 1 - t^2, \dot{y} = 2t$ $\dot{x}^2 + \dot{y}^2 = \left(1 - t^2\right)^2 + 4t^2$ $= \left(1 + t^2\right)^2$ A1  A3  AG; must be intermediate line  (b) $S = 2\pi \int_{1}^{2} \left(1 + t^2\right) t^2 dt$ $= 2\pi \left[\frac{t^3}{3} + \frac{t^5}{5}\right]_{1}^{2}$ $= 2\pi \left[\frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q    | Solution                                                | Marks | Total | Comments                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------|-------|-------|--------------------------------------------------|
| $A = 1, B = -1$ $A1$ $A1F$ $A1F$ $Or$ $\frac{r^2 + r - 1}{r^2 + r} = 1 - \frac{1}{r(r+1)}$ $B1$ $= 1 - \left(\frac{1}{r} - \frac{1}{r+1}\right)$ $M1A1$ $Do not allow M1 if merely$ $\sum \frac{1}{r} - \sum \frac{1}{r+1} \text{ is summed}$ $A1 for suitable (3 at least) number of row$ $Sum = 98 + \frac{1}{100}$ $= 98.01$ $M1$ $= 98.01$ $M1$ $= 98.01$ $M1$ $= 98.01$ $M1$ $= (1 + t^2)^2 + 4t^2$ $= (1 + t^2)^2 + 4t^2$ $= (1 + t^2)^2$ $A1$ $M1$ $= (2a)$ $x = 1 - t^2, y = 2t$ $x^2 + y^2 = (1 - t^2)^2 + 4t^2$ $= (1 + t^2)^2$ $A1$ $M1$ $= (1 + t^2)^2$ $A1$ $M1$ $= 2\pi \left[\frac{t^3}{3} + \frac{t^5}{5}\right]_1^1$ $= 2\pi \left[\frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{15} - \frac{1}{5} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{8}{15} + \frac{32}{15} - \frac{1}{5} - \frac{1}{5}\right]$ $= 2\pi \left[\frac{1}{15} + \frac{1}{15} + \frac{1}{15} - \frac{1}{15} - \frac{1}{15} + \frac{1}{15} - $ | 1(a) | $r^2 + r - 1 = A(r^2 + r) + B$                          | M1    |       | Any correct method                               |
| (b) $r = 1  1 - \frac{1}{1} + \frac{1}{2}$ $r = 2  1 - \frac{1}{2} + \frac{1}{3}$ $r = 99  1 - \frac{1}{99} + \frac{1}{100}$ Sum $= 98 + \frac{1}{100}$ $= 98.01$ M1  2(a) $x = 1 - t^2 \cdot y = 2t$ $x^2 + y^2 = (1 - t^2)^2 + 4t^2$ $= (1 + t^2)^2$ A1  M1 $x = 2 + t^2 \cdot y = 4t^2$ $x = 1 - t^2 \cdot y = 2t$ $x = 1 - t^2 \cdot y = 2t$ A1  M1  M1  M1  Must have 98 or 99  OE Allow correct answer with no working 4 marks  (b) $x = 2\pi \int_{1}^{2} (1 + t^2) t^2 dt$ $x = 1 - t^2 \cdot y = 2t$ M1  Must be correct substitutions for M1  A1 Allow if one term integrated correctly  A1 Allow if one term integrated correctly  A2 Any form $x = 2 - t \int_{1}^{2} (1 + t^2) t^2 dt$ A1 Allow if one term integrated correctly  A2 Any form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | A = 1, B = -1                                           | A1    |       |                                                  |
| (b) $r = 1  1 - \frac{1}{1} + \frac{1}{2}$ $r = 2  1 - \frac{1}{2} + \frac{1}{3}$ $r = 99  1 - \frac{1}{99} + \frac{1}{100}$ Sum = $98 + \frac{1}{100}$ = $98.01$ Must have $98 \text{ or } 99$ OE Allow correct answer with no working $\frac{1}{2} + \frac{1}{2} + \frac{1}{$                                                        |      |                                                         | A1F   | 3     |                                                  |
| (b) $r = 1  1 - \frac{1}{1} + \frac{1}{2}$ $r = 2  1 - \frac{1}{2} + \frac{1}{2}$ $r = 99  1 - \frac{1}{99} + \frac{1}{100}$ Sum = $98 + \frac{1}{100}$ = $98.01$ Must have $98 \text{ or } 99$ OE Allow correct answer with no working $4 \text{ marks}$ Total  7  2(a) $\dot{x} = 1 - t^2, \dot{y} = 2t$ $\dot{x}^2 + \dot{y}^2 = (1 - t^2)^2 + 4t^2$ $= (1 + t^2)^2$ A1 3 AG; must be intermediate line  (b) $S = 2\pi \int_{1}^{2} (1 + t^2) t^2 dt$ $= 2\pi \left[ \frac{t^3}{3} + \frac{t^5}{5} \right]_{1}^{2}$ $= 2\pi \left[ \frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5} \right]$ $= 2\pi \left[ \frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5} \right]$ A1F Any form  A1F 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                         |       |       | ` ,                                              |
| $r = 2  1 - \frac{1}{2} + \frac{1}{3}$ $r = 99  1 - \frac{1}{99} + \frac{1}{100}$ $Sum = 98 + \frac{1}{100}$ $= 98.01$ $m1$ $A1F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                         |       |       | $=1-\left(\frac{1}{r}-\frac{1}{r+1}\right) M1A1$ |
| $r = 2  1 - \frac{1}{2} + \frac{1}{3}$ $r = 99  1 - \frac{1}{99} + \frac{1}{100}$ $Sum = 98 + \frac{1}{100}$ $= 98.01$ $m1$ $A1F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b)  | $r = 1$ $1 - \frac{1}{1} + \frac{1}{2}$                 |       |       |                                                  |
| $r = 99  1 - \frac{1}{99} + \frac{1}{100}$ $Sum = 98 + \frac{1}{100}$ $= 98.01$ $m1$ $A1F$ $4$ $Must have 98 or 99$ $OE Allow correct answer with no working 4 marks$ $x^2 + y^2 = (1 - t^2)^2 + 4t^2$ $= (1 + t^2)^2$ $A1$ $S = 2\pi \int_{1}^{2} (1 + t^2) t^2 dt$ $= 2\pi \left[ \frac{t^3}{3} + \frac{t^5}{5} \right]_{1}^{2}$ $= 2\pi \left[ \frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5} \right]$ $= 2\pi \left[ \frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5} \right]$ $= 2\pi \left[ \frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5} \right]$ $= 2\pi \left[ \frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5} \right]$ $= \frac{256\pi}{15}$ $A1F$ $A1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 2 1/ 1/                                                 | M1    |       | Do not allow M1 if merely                        |
| $r = 99  1 - \frac{17}{99} + \frac{1}{100}$ $Sum = 98 + \frac{1}{100}$ $= 98.01$ $Sum = 98 + \frac{1}{100}$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 100$ $= 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | $r = 2$ $1 - \frac{1}{2} + \frac{1}{3}$                 | 1411  |       | •                                                |
| Sum = $98 + \frac{1}{100}$ $= 98.01$ m1 A1F A1F A1F A1F A1F A1F A1F A1F A1F A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | r = 00  1  1 /  1                                       | A 1 E |       | , , , , ,                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 7 - 99  1 - 99  + 100                                   | AII   |       | At for suitable (3 at least) number of rows      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $Sum = 98 + \frac{1}{100}$                              | m1    |       | Must have 98 or 99                               |
| Total  Total  7  2(a) $\dot{x} = 1 - t^2, \dot{y} = 2t$ $\dot{x}^2 + \dot{y}^2 = \left(1 - t^2\right)^2 + 4t^2$ $= \left(1 + t^2\right)^2$ A1  A3  AG; must be intermediate line  (b) $S = 2\pi \int_{1}^{2} \left(1 + t^2\right) t^2 dt$ $= 2\pi \left[\frac{t^3}{3} + \frac{t^5}{5}\right]_{1}^{2}$ $= 2\pi \left[\frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                         |       | 4     | OE Allow correct answer with no working          |
| 2(a) $\dot{x} = 1 - t^2, \dot{y} = 2t$ $\dot{x}^2 + \dot{y}^2 = \left(1 - t^2\right)^2 + 4t^2$ $= \left(1 + t^2\right)^2$ Al 3 AG; must be intermediate line  (b) $S = 2\pi \int_{1}^{2} \left(1 + t^2\right) t^2 dt$ $= 2\pi \left[\frac{t^3}{3} + \frac{t^5}{5}\right]_{1}^{2}$ $= 2\pi \left[\frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ Alf Allow if one term integrated correctly $= 2\frac{8}{15} = \frac{256\pi}{15}$ Alf Any form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                         |       |       |                                                  |
| $\dot{x}^2 + \dot{y}^2 = \left(1 - t^2\right)^2 + 4t^2$ $= \left(1 + t^2\right)^2$ M1 A1 AG; must be intermediate line $S = 2\pi \int_{1}^{2} \left(1 + t^2\right) t^2 dt$ $= 2\pi \left[\frac{t^3}{3} + \frac{t^5}{5}\right]_{1}^{2}$ M1A1 Must be correct substitutions for M1 $= 2\pi \left[\frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ Allow if one term integrated correctly $= 2\pi \left[\frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right]$ Any form $= \frac{256\pi}{15}$ A1F A1F 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(a) |                                                         | D1    | 7     |                                                  |
| (b) $S = 2\pi \int_{1}^{2} (1+t^{2}) t^{2} dt$ $= 2\pi \left[ \frac{t^{3}}{3} + \frac{t^{5}}{5} \right]_{1}^{2}$ $= 2\pi \left[ \frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5} \right]$ $= \frac{256\pi}{15}$ Must be correct substitutions for M1  Allow if one term integrated correctly  Any form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(a) | v $v$ $v$ $v$ $v$                                       | BI    |       |                                                  |
| (b) $S = 2\pi \int_{1}^{2} (1+t^{2}) t^{2} dt$ $= 2\pi \left[ \frac{t^{3}}{3} + \frac{t^{5}}{5} \right]_{1}^{2}$ $= 2\pi \left[ \frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5} \right]$ $= \frac{256\pi}{15}$ Must be correct substitutions for M1  Allow if one term integrated correctly  Any form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | $\dot{x}^2 + \dot{y}^2 = \left(1 - t^2\right)^2 + 4t^2$ | M1    |       |                                                  |
| $S = 2\pi \int_{1}^{\infty} (1+t^2) t^2 dt$ $= 2\pi \left[ \frac{t^3}{3} + \frac{t^5}{5} \right]_{1}^{2}$ $= 2\pi \left[ \frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5} \right]$ $= \frac{256\pi}{15}$ Must be correct substitutions for M1  Allow if one term integrated correctly  A1F  Any form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | $=\left(1+t^2\right)^2$                                 | A1    | 3     | AG; must be intermediate line                    |
| $= 2\pi \left[ \frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5} \right]$ $= \frac{256\pi}{15}$ A1F Any form $5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b)  | $S = 2\pi \int_{1}^{2} \left(1 + t^{2}\right) t^{2} dt$ | M1A1  |       | Must be correct substitutions for M1             |
| $=\frac{256\pi}{15}$ A1F 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | $=2\pi \left[\frac{t^3}{3} + \frac{t^5}{5}\right]_1^2$  | m1    |       | Allow if one term integrated correctly           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                         | A1F   |       | Any form                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $=\frac{256\pi}{15}$                                    | A1F   | 5     |                                                  |
| 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Total                                                   |       | 8     |                                                  |

| Q       | Solution                                                                                                   | Marks      | Total | Comments                                                    |
|---------|------------------------------------------------------------------------------------------------------------|------------|-------|-------------------------------------------------------------|
| 3(a)(i) | $\frac{e^k + e^{-k}}{2} - \frac{3(e^k - e^{-k})}{2} = -1$                                                  | M1         |       | Allow if 2's are missing or if coshx and sinhx interchanged |
|         | $-2e^{k} + 4e^{-k} = -2$                                                                                   | A1         |       | Sinix interchanged                                          |
|         | $-2e^{k} + 4e^{-k} = -2$ $e^{2k} - e^{k} - 2 = 0$ $(e^{k} + 1)(e^{k} - 2) = 0$ $e^{k} \neq -1$ $e^{k} = 2$ | A1         | 3     | AG Condone <i>x</i> instead of <i>k</i>                     |
| (ii)    | $\left(e^k + 1\right)\left(e^k - 2\right) = 0$                                                             | M1         |       |                                                             |
|         | $e^k \neq -1$                                                                                              | E1         |       | Must state something to earn E1. Do not                     |
|         | $e^k = 2$                                                                                                  | A1         |       | accept ignoring or crossing out.                            |
|         | $k = \ln 2$                                                                                                | A1F        | 4     |                                                             |
| (b)(i)  | $ \cosh x = 3\sinh x $ or in terms of $e^x$                                                                | M1         |       |                                                             |
|         | $\tanh x = \frac{1}{3} \text{ or } 2e^x = 4e^{-x}$                                                         | <b>A</b> 1 |       |                                                             |
|         | $x = \frac{1}{2} \ln \left( \frac{1 + \frac{1}{3}}{1 - \frac{1}{3}} \right)$ or $e^{2x} = 2$               | A1F        |       |                                                             |
|         | $x = \frac{1}{2} \ln 2$                                                                                    | A1         | 4     | CAO                                                         |
| (ii)    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh x - 3\cosh x  \text{or}  -\mathrm{e}^x - 2\mathrm{e}^{-x}$        | M1         |       |                                                             |
|         | $= 0$ when $\tanh x = 3$ or $e^{2x} = -2$                                                                  | A1         |       |                                                             |
|         | Correct reason                                                                                             | E1         | 3     | Must give a reason                                          |
| (iii)   | $\frac{d^2 y}{dx^2} = y = 0$ at $(\frac{1}{2} \ln 2, 0)$                                                   | B1F        | 1     |                                                             |
|         | ie one point                                                                                               |            |       |                                                             |
|         | Total                                                                                                      |            | 15    |                                                             |

| MFP2 (cont) Q | Solution                                                  | Marks | Total | Comments                                            |
|---------------|-----------------------------------------------------------|-------|-------|-----------------------------------------------------|
| 4             | × ×                                                       |       |       |                                                     |
| (a)(i)        | Circle                                                    | B1    |       |                                                     |
|               | Correct centre                                            | B1    |       |                                                     |
|               | Enclosing the origin                                      | B1    | 3     |                                                     |
| (ii)          | Half line                                                 | B1    |       |                                                     |
|               | Correct starting point                                    | B1    |       |                                                     |
|               | Correct angle                                             | B1    | 3     |                                                     |
| (b)           | Correct part of the line <b>indicated</b>                 | B1F   | 1     |                                                     |
| (~)           | Total                                                     | 211   | 7     |                                                     |
| 5(a)(i)       | $\alpha + \beta + \gamma = 4i$                            | B1    | 1     |                                                     |
| (ii)          | $\alpha\beta\gamma = 4-2i$                                | B1    | 1     |                                                     |
| (b)(i)        | $\alpha + \alpha = 4i$ , $\alpha = 2i$                    | B1    | 1     | AG                                                  |
| (ii)          | $\beta \gamma = \frac{4-2i}{2i} = -2i -1$                 | M1    |       | Some method must be shown, eg $\frac{2}{i}$ – 1     |
|               | 21                                                        | A1    | 2     | AG                                                  |
| (iii)         | $q = \alpha \beta + \beta \gamma + \gamma \alpha$         | M1    |       |                                                     |
|               | $=\alpha(\beta+\gamma)+\beta\gamma$                       | M1    |       | Or $\alpha^2 + \beta \gamma$ , ie suitable grouping |
|               | $= 2i \cdot 2i - 2i - 1 = -2i - 5$                        | A1    | 3     | AG                                                  |
|               |                                                           | 3.61  |       |                                                     |
| (c)           | Use of $\beta + \gamma = 2i$ and $\beta \gamma = -2i - 1$ | M1    |       | Elimination of say $\gamma$ to arrive at            |
|               | $z^2 - 2iz - (1 + 2i) = 0$                                | A1    | 2     | $\beta^2 - 2i\beta - (1+2i) = 0$ M1A0 unless        |
|               |                                                           |       |       | also some reference to $\gamma$ being a root AG     |
| (d)           | f(-1) = 1 + 2i - 1 - 2i = 0                               | M1    |       | For any correct method                              |
|               | $\beta = -1$ , $\gamma = 1 + 2i$                          | A1A1  | 3     | A1 for each answer                                  |
|               | Total                                                     |       | 13    |                                                     |

| Q    | Solution                                  | Marks | Total | Comments                                           |
|------|-------------------------------------------|-------|-------|----------------------------------------------------|
| 6(a) | $f(n+1)-8f(n)=15^{n+1}-8^{n-1}$           |       |       |                                                    |
|      | $-8(15^n - 8^{n-2})$                      | M1A1  |       |                                                    |
|      | $=15^{n+1}-8.15^n$                        |       |       |                                                    |
|      | $=15^n (15-8)$                            | M1    |       | For multiples of powers of 15 only                 |
|      | $=7.15^{n}$                               | A1    | 4     | For valid method ie not using 120 <sup>n</sup> etc |
| (b)  | Assume $f(n)$ is $M(7)$                   |       |       |                                                    |
|      | Then $f(n+1) - 8f(n) = 7 \times 15^n$     | M1    |       | Or considering $f(n+1)-f(n)$                       |
|      | f(n+1) = M(7) + M(7)                      |       |       |                                                    |
|      | = M(7)                                    | A1    |       |                                                    |
|      | $n = 2$ : $f(n) = 15^2 - 8^0 = 224$       |       |       |                                                    |
|      | $= 7 \times 32$                           | B1    |       | n=1 B0                                             |
|      | $P(n) \Rightarrow P(n+1)$ and $P(2)$ true | E1    | 4     | Must score previous 3 marks to be awarded E1       |
|      | Total                                     |       | 8     |                                                    |

| Q Q    | Solution                                                                                            | Marks        | Total | Comments                                                                               |
|--------|-----------------------------------------------------------------------------------------------------|--------------|-------|----------------------------------------------------------------------------------------|
| 7(a)   | 2 <i>k</i> πi                                                                                       | M1           |       |                                                                                        |
|        | $z = e^{-\frac{\pi}{6}}$ , $k = 0, \pm 1, \pm 2, 3$                                                 | A2,1,0       | 3     | OE                                                                                     |
|        |                                                                                                     |              |       | M1A1 only if:                                                                          |
|        |                                                                                                     |              |       | (1) range for $k$ is incorrect eg 0,1,2,3,4,5                                          |
| (b)(i) | 2                                                                                                   |              |       | (2) i is missing                                                                       |
| (0)(1) | $\frac{w^2 - 1}{w} = w - \frac{1}{w} = 2i\sin\theta$                                                | M1A1         | 2     | AG                                                                                     |
|        | w $w$                                                                                               |              |       |                                                                                        |
| (ii)   | $\frac{w}{w} = \frac{1}{w}$                                                                         | 3.61         |       |                                                                                        |
|        | $\frac{w}{w^2 - 1} = \frac{1}{2i\sin\theta}$                                                        | M1           |       |                                                                                        |
|        |                                                                                                     | A1           | 2     | AG                                                                                     |
|        | $=-\frac{\mathrm{i}}{2\sin\theta}$                                                                  | ***          | _     |                                                                                        |
| (iii)  | $2i  -2iw^{-1}i$                                                                                    | 3.54         |       | On for 1                                                                               |
|        | $\frac{2i}{w^2 - 1} = \frac{-2iw^{-1}i}{2\sin\theta}$                                               | M1           |       | Or for $\frac{1}{\sin \theta} e^{i\theta}$                                             |
|        |                                                                                                     |              |       |                                                                                        |
|        | $=\frac{1}{\sin\theta}(\cos\theta-\mathrm{i}\sin\theta)$                                            | A1           |       |                                                                                        |
|        | $= \cot \theta - i$                                                                                 | A1           | 2     |                                                                                        |
|        | $= \cot \theta - 1$                                                                                 | AI           | 3     | AG                                                                                     |
| (IV)   | $z = \frac{2i}{w^2 - 1} \text{ Or } z + 2i = \frac{2i}{w^2 - 1} + 2i$                               | M1           |       | ie any correct method                                                                  |
|        | $w^2 - 1$ $w^2 - 1$                                                                                 |              |       |                                                                                        |
|        | $z + 2i = zw^2$                                                                                     | A1           | 2     | AG                                                                                     |
| (c)(i) | No coefficient of $z^6$                                                                             | E1           | 1     |                                                                                        |
|        |                                                                                                     |              |       |                                                                                        |
|        | $(w^2)^6 = 1$ $w^2 = e^{\frac{k\pi i}{3}}$<br>$z = \cot \frac{k\pi}{6} - i$ , $k = \pm 1, \pm 2, 3$ | B1           |       | Alternatively:                                                                         |
|        | kπ                                                                                                  | 3.61         |       | $z + 2i = e^{\frac{k\pi i}{3}}z \qquad B1$ $z = \frac{2i}{\frac{k\pi i}{2}} \qquad M1$ |
|        | $z = \cot \frac{\pi}{6} - i$ , $k = \pm 1, \pm 2, 3$                                                | M1<br>A2,1,0 | 1     | $z+21=e^{-3}z$ B1                                                                      |
|        | · ·                                                                                                 | A2,1,0       | +     | $z = \frac{2i}{1 + i}$ M1                                                              |
|        |                                                                                                     |              |       | $\frac{k\pi i}{e^{3}-1}$                                                               |
|        |                                                                                                     |              |       | roots A2,1,0                                                                           |
|        |                                                                                                     |              |       |                                                                                        |
|        |                                                                                                     |              |       | (NB roots are $\pm \sqrt{3} - i$ ; $\pm \frac{1}{\sqrt{3}} - i$ ; $-i$ )               |
|        | Total                                                                                               |              | 17    |                                                                                        |
|        | TOTAL                                                                                               |              | 75    |                                                                                        |